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The problem of dynamic stability of motion of underwater vehicles is addressed by developing an 
analytical model of the underwater vehicle dynamics and by applying it using a simulator. The 
model’s equations of motion were obtained by combining theoretical formulae with experimental 
data, taking into account the coupling between the different forces and moments produced on the 
submersible by the surrounding fluid. All the terms included in the equations have been derived 
from scratch. A simplified procedure for obtaining the force, moment, and the added mass 
coefficients needed as input of the equations by using potential flow theory and adding viscous 
effects in the stern region is shown. Satisfactory results are obtained when applying the derived 
method to calculate these coefficients for submarines and airships documented in the literature.  
 
The derived equations of motion have been implemented in a simulator together with a model for 
the fins, rudders, and control surfaces. This simulator was used to perform a dynamic stability 
analysis of the motion of a submersible catamaran designed for tourist tours. Three different 
configurations of rudders were used; the analyses of the dynamic responses of the vehicle for 
different cases show that the vehicle is intrinsically unstable but easily controllable, as has been 
proven by using a controller developed specifically for this purpose. The use of genetic algorithms 
for developing this controller results in a very efficient tailored system. 
 
 
1. INTRODUCTION 
 
No too long ago submarine vehicle design was 
almost exclusively restricted to military 
applications. Recently a variety of different 
applications has emerged, these are mainly 
autonomous underwater vehicles aimed for 
different purposes as well as some manned 
underwater vehicles devoted to research, 
exploration, survey or tourism. Particularly, the 
present work has been carried out within the 
framework of a project for a tourism submarine 
vehicle. Our goal is to obtain a dynamical 
model for a generic underwater vehicle, to 
apply it to this particular submarine and then to 
use it to study its stability and to develop its 
control system.  

Publications describing the dynamics of 
underwater vehicles are quite sparse. Probably 
this is due to the fact that most of the related 
work is classified and therefore unpublished. 
Examples of publications containing general 
models of underwater vehicles are those by 
Brutzman [1] and Abkowitz [2]. Some other 
authors, such as Coxon [3], use the standard 
equations of motion for submarines by 
Feldman [4] and by Gertler and Hagen [5], 
both from the David W. Taylor Naval Ship 
Research and Development Center. In our case 
the dynamical model has been developed from 
scratch independently of the ones used in other 
studies of submarines. Nevertheless, after 
realising that the similarity parameters –
Reynolds number and buoyancy to weight  
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ratio- of submarines and airships get their 
values in the same range, we have made use of 
the theoretical and experimental developments 
performed on the latter during the first third of 
the twentieth century. The vehicle object of the 
present study is a submersible catamaran and, 
consequently, it has a complex geometry. 
Figure 1 displays a sketch of the submarine and 
its main dimensions. The vessel has some 
thrusters to perform manoeuvres at a fixed 
point or near obstacles, these thrusters are not 
going to be considered in the present work as 
we attempt to focus on the manoeuvres 
governed by fins or rudders. In this paper we 
also present some simplified analytical tools 
allowing the estimation of forces, moments, 
and added mass coefficients altogether with a 
model to take into account the effects of fins 
and other governing surfaces. Stability analyses 
are performed on three models corresponding 
to three different configurations of these 
surfaces.   
 
 
2. EQUATIONS OF MOTION 
 
The laws of conservation of momentum and 
angular momentum expressed in a system of 
cartesian coordinate axes fixed to the vehicle 
are: 

 

VùVF ⊗+= &
m

     (1) 

 
( )ùIùùIM ⋅⊗+⋅= &     (2) 

 
The force F and angular momentum M vectors 
account for the forces directly applied to the 
vehicle and their moments; that is for weight, 
buoyancy, drag, lift and thrust and their 
moments with respect to the vehicle’s centre of 
gravity. The inertia matrix I is a function of 
both the vehicle’s geometry and its weight 
distribution, but –as it happens in any 
submarine- the vehicle has a symmetry plane. 
Taking this plane as xz -represented in figure 1- 
then Ixy=Iyx=Iyz=Izy=0, and Ixz=Izx.  
 
The angular velocity ωω can be accounted for by 
the rotation needed to transform from body-
fixed Fb to local horizon Fh coordinate systems, 
as shown in figure 2. The local horizon 
cartesian coordinate system has its origin in the 
centre of gravity of the vehicle, having its axes 
directions parallel to the ones given by a 
reference coordinate system fixed to the earth’s 
surface. According to this, and following the 
terminology in figure 2, the angle ψ represents 
the vehicle’s course, while φ is the vehicle’s 
balancing angle and θ is its climbing angle. 

 
Figure 1 Sketch and main dimensions of the submarine 
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Calling ωω = (p, q, r) it is easy to obtain from 
figure 2: 
 

φθψ && +−= sinp  
φθφθψ cossincos && +=q     (3) 
φθφθψ sincoscos && −=r  

 
Figure 2 Transformation from body-fixed to 
local horizon coordinate axes. 
 
Consider now the forces and moments exerted 
on the vehicle. On one hand we have thrust, 
weight, and buoyancy and their moments with 
respect to the center of gravity, all of these 
should be known for the vehicle’s current 
configuration. In addition we should consider 
some other forces and moments coming from 
the flow hydrodynamic reactions. Therefore, 
the forces exerted on the submarine can be 
expressed as: 
 

( )( )θφθφθ coscos,cossin,sin−−++= bgmTH FFF
(4) 

 
Where FH are the hydrodynamic forces, FT is 
the thrust, and b is the modulus of the 
buoyancy force divided by the mass m of the 
vehicle. Similarly, by taking the moments on 
the center of gravity of the forces exerted on 
the submarine, the following relation is 
obtained: 
 

( )0,sin,sincos θφθ−++= mbdTH MMM  (5) 

Where MH is the vector of the moments of 
hydrodynamic forces, MT the moment 
produced by thrust and d is the distance 
between the vehicle’s center of gravity and its 
center of buoyancy. In order to preserve the 
conditions needed to make static equilibrium 
possible, it is necessary to accept that both, 
gravity and buoyancy centers are in the plane 
of symmetry and both have the same x 
coordinate. Notice than the thrust force FT and 
its moment MT should be known, while the 
hydrodynamic forces FH  -lift, drag, and lateral 
forces- should be obtained in a cartesian 
coordinate system aligned with the flow, as 
represented in figure 3. In this coordinate 
system the x axis is given by the flow direction 
while the z axis remains in the vehicle’s plane 
of symmetry. Thus, only two rotations are 
needed to transform from this system to the 
body-fixed one, the first is the angle of attack α 
and the second is the sideslip angleβ. The 
hydrodynamic forces exerted by the fluid on 
the vehicle are given in the following general 
form: 
 

kVCVF FH ⋅+−= &VV ρρ 3
2

2
2
1    (6) 

 
Where ρ is the density of the fluid, V is the 
volume of the vehicle, CF = (CD, CQ, CL) is 

the vector formed with the drag, lateral force 
and lift coefficients, while k is a diagonal 

 
 
Figure 3 Hydrodynamic forces: lift L, drag D, 
and lateral Q. 
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matrix containing the added mass coefficients. 
Similar coefficients, called inertia moment 
coefficients, appear in the determination of the 
momentum exerted by the fluid on the vehicle: 
 

ùICVM MH &⋅′+= ρρ V2
2
1     (7) 

 
Where I’ represent the volumetric inertia 
matrix of the volume occupied by the vehicle. 
The terms of added mass or added inertia 
moments are relevant only in cases when the 
densities of fluid and vehicle are of the same 
order, which is the case of submarines or 
airships.  
 
The hydrodynamic forces FH and moments MH 
are estimated in a coordinate system oriented 
with the flow velocity, in order to transform 
them to a body-fixed coordinate system these 
vectors must be multiplied by the matrix: 
 

[ ]
















⋅−⋅

−⋅−⋅
=

αβααβ
ββ

αβαβα

cossensensencos
0cossen

sensencoscoscos

bwL   (8) 

 
Force, mass, and inertia moment coefficients 
appearing in these equations can be determined 
experimentally, numerically or analytically. In 
principle they should be known as input for our 
simulator, however, as this simulator is also 
intended as a tool to be used elsewhere as a 
part of an evolutionary design system based on 
artificial neural networks, in the following 
sections some simple and fast analytical 
methods to determine these coefficients and 
suitable to be used within the automatic design 
iterative process will be shown.  
 
 
3. ESTIMATION OF ADDED MASS AND 
ADDED INERTIA COEFFICIENTS 
 
Some numerical and analytical methods can be 
found in the literature to estimate added mass 
and inertia coefficients, many of them could be 
suitable for our simulator. An example is the 

relatively simple panel method by Sahin et Al 
[6]. Nevertheless, even this simple method is 
too time consuming to be used later on within 
the unsupervised and evolutionary control 
design system mentioned above, therefore 
much simpler and straightforward calculation 
methods are needed to avoid unnecessary 
overheads. Thus, we have resorted to the 
analytical method originally developed by 
Tuckerman [7] to be used in airship design. 
This method is simple and robust, but it works 
only for ellipsoids; consequently it will be 
necessary to choose an equivalent ellipsoid 
approximating the geometry of the vehicle as 
shown in figure 4. Obviously, this method will 
gain in accuracy as shapes get closer to an 
ellipsoid, as it happens in conventional 
submarines. Following this method, for an 
ellipsoid of axes a, b, and c Tuckerman [7] 
obtained the following expressions for the 
added mass coefficients: 
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And for the added moment of inertia 
coefficients: 
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Figure 4 Equivalent ellipsoid used for 
simplified added mass coefficients estimation. 
Being the expressions for k’y and k’z 
symmetrical.  
 
In these expressions, α0, β0, and γ0 are 
particular values for λ = 0 of the Green 
integrals: 
 

( ) ( )( )( )∫
∞

++++
=

λ λλλλ
λα

2222 cbaa

d
abc    (11) 

 
With symmetrical expressions for β and γ.  
 
After transforming into the standard Legendre 
form and particularizing for λ = 0, Tuckerman 
obtained these parameters as: 
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Where, u0 = F (ϕ0; θ ) and E (u0) = E (ϕ0; θ ) 
are standard elliptic integrals having amplitude 
ϕ0 = sin-1e1, and modular angle θ = sin-1(e2/e1), 
being e1 and e2 the eccentricities of the 
ellipsoid’s central sections normal to the 
intermediate and minimum axes. Taking the 
actual values of the ellipsoid axes a, b, c given 
for our particular case in figure 4 the 
eccentricities values are obtained as e1 = 
0.91096 and e2 = 0.81223, resulting in ϕ0 = 
65.638º and θ = 63.078º. Then, by using tables 
of elliptic integrals of the second class we 
obtain the following values: 
 
α0 = 0.34754; β0 = 0.79626; γ0 = 0.86557  
 
And by using the equations above, the 
following values of the added mass and added 
moment of inertia coefficients are obtained: 
 
kx = 0.20900;  ky =0.66148; kz = 0.76300 
k’x = 0.00689; k’y = 0.29096; k’z = 0.20444 
 
It is difficult to evaluate the accuracy of this 
method when it is applied to the actual 
geometry of our vessel. Nevertheless, as it was 
mentioned earlier, our purpose is to apply it in 
the analysis and design of submarines with 
more conventional shapes. This method was 
applied to shapes of airships with known 
coefficients given by Munk [8] and Tuckerman 
[7], the errors found were of 5%. 
 
 
4. FORCE AND MOMENT COEFFICIENS 
ESTIMATION 
 
For the same reasons presented in the previous 
sections, we are going to show a very simple 
and fast analytical method for the estimation of 
force and moment coefficients, needed to 
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calculate the hydrodynamic reactions exerted 
on the submarine. Some early potential 
methods developed for airships, such as the 
ones by Munk [8] and Laitone [9] did not 
provide satisfactory results because they did 
not take in account the viscous and turbulent 
effects which are very important in the aft. The 
model by Hopkins [10] is probably the simplest 
one taking into account these effects and 
providing satisfactory enough results. This 
semi empirical method determines the lift, drag 
and pitch moment of bodies of revolution by 
using their added mass coefficients. Thus, to 
use it we must transform the equivalent 
ellipsoid of our vehicle into an ellipsoid of 
revolution. Then, it will be considered that in a 
large fore part of the body the flow is governed 
by potential theory, while in a smaller aft part 
viscous and turbulent effects are dominant. To 
account for all this, a conical surface is added 
as an after body as shown in figure 5. This 
after-body cone is tangent to the ellipsoid in a 
circle placed at a distance x1 from the front end 
but it is assumed that the potential flow extends 
a bit further back of this place to a distance x0. 
The force and moment coefficients result from 
the following expressions:  
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(13) 
 
Where k1 and k2 are the added mass 
coefficients in the longitudinal and transversal 
directions, L is the vehicle’s total length, S is 
the cross sectional area, which is a function of 
x, α is the angle of attack, xm is the coordinate 
of the point where the moments are taken, η is 
the ratio between the drag coefficient of a 
cylinder with the same thickness as the 
ellipsoid and the drag coefficient of an infinite 
cylinder, Cdc is the drag coefficient of an 
infinite cylinder, and r is the local radius. 
According to Hopkins [10], the coordinate x1 is 
taken where dS/dx reaches its largest negative 
value, and x0 is given by the empirical 
correlation: 
 

  
Figure 5 Equivalent ellipsoid and conical after-body used for simplified force and moment 
coefficients estimation 
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L
x

L
x 10 527.0378.0 +=  (14) 

 
The drag proportionality factor η is given as a 
function of the ratio n between both ellipsoids’ 
axes by the empirical correlation: 
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220

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= nη  (15) 

 
This correlation has been obtained by fitting a 
graph by Hopkins [10] where different 
experimental results are plotted. 
 
Applying all these expressions to the actual 
geometry of the ellipsoid fitting our submarine, 
the following values of the coefficient are 
obtained: 
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Taking into account the symmetry of this 
ellipsoid the values of the other coefficients are 
obtained from these: 
 

0
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           (17) 

 
From these values we can immediately gather 
that the submarine defined as before without 
control surfaces is unstable because CMy is 
positive for any α < 5.58 rad. 
 
As it was the case for the added mass 
coefficients, the accuracy of this method could 
be compromised when applied to the complex 
geometry of our catamaran. However, 
comparing our method with the experimental 
results on airships giving by Hopkins, the 
calculated values result to be 17% lower than 
the experiments. Some other comparisons were 

performed with experiments made in 
deceleration test of airships by Thompson and 
Kirschbaum [14] giving calculated values 18% 
lower than experiments.  
 
 
5. FORCES AND MOMENTS EXERTED 
BY THE CONTROL SURFACES 
 
Modeling forces and moments exerted by the 
fins and rudders is a fundamental task in 
designing the control system for this type of 
vehicles. In general, considering these forces as 
a result of hydrodynamic reactions, they can be 
expressed as: 
 

( )τδξ ++⋅⋅⋅⋅= pRudderRudderLRudder SCF 2
.2

1 V  

(18) 
 
Where the incidence angle of the flow reaching 
the rudder is taken as the sum of the general 
incidence angle ξ in the plane normal to the 
rudder, plus the deflection of the rudder δ, plus 
the deviation angle τ due to the vehicle’s 
angular velocity. The general incidence angle ξ 
in the plane normal to the rudder is equal to the 
angle of attack α for the horizontal control 
planes, and is equal to the side slip angle β for 
the vertical ones. The deviation angle τ due to 
the vehicle’s angular velocity for a horizontal 
control surface can be obtained as: 
 

xV
V Rudderz xq−

=τ  (19) 

 
And for vertical control surfaces: 
 

xV

V Ruddery xr+
=τ  (20) 

 
To obtain the moments exerted by the control 
surface’s reactions on the vehicle’s center of 
gravity it is sufficient to multiply de force 
FRudder by the distance xRudder. In any case all 
these forces and moments are of the 
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hydrodynamic type, thus the above used 
expressions are only valid in a reference 
coordinate system oriented with the local flow 
velocity. In order to transform them into a 
body-fixed system, they must be multiplied by 
a matrix similar to the Lbw defined earlier but 
having the angles α and β added to their 
corresponding deviation angle τ. 
 
 
6. SIMULATION 
 
The described equations of motion of the 
vehicle, as well as the estimated forces, 
moments, added mass, and added inertia 
coefficients and the appropriate transformation 
matrixes have been implemented in a simulator 
by using Simulink and the Matlab working 
space. This simulator was used first to perform 
the stability studies in the present work and, in 
addition, it has been used within the 
evolutionary control design system mentioned 
earlier and presented by Lamas et Al [11]. The 
dynamic iteration loop required was of 10-4, the 
time step was of 10-2 and the sampling time 
was of 10-3. To have a validation of the 
performance of this simulator, it was applied to 
the REMUS autonomous underwater vehicle 
by Prestero [12]. The characteristics of this 
vehicle were implemented in our simulator and 
the results obtained were found to be in 

agreement with the data published by Prestero, 
as shown in figure 6. The differences observed 
arise from the fact that in Prestero’s case a 
controller is implemented while in our 
simulation no controller is present, nevertheless 
the main behavior characteristics are captured.  
 

 
 

Figure 7 The three different configuration of rudders used. 
 

Figure 6 REMUS simulations by Prestero 
(above) and by our model (below). 
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Figure 8. Results of moments and angle evolution for the three models with 100 N of thrust, rudders 
fixed in a neutral position and 2% more buoyancy than weight
 
 

 

Three different models of our vehicle 
corresponding to three configurations of the 
control planes were modeled, as shown in 
figure 7. The first and second models include a 
single elevation rudder placed in the rear and in 
the middle part respectively, while the third 
model has two elevation rudders as a 

combination of the other two. Different 
simulations were performed for each one of  
 
these models after varying the thrust applied 
and the rudders positions. In all cases the 
catamaran behavior results unstable. As an 
example, figure 8 shows the results for the 
three models with 100 N of thrust, being their  
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Figure 9 Results of moments and angle evolution for model 1 with 5000 N of thrust, rudders fixed 
in a neutral position and 2% more buoyancy than weight.
 
buoyancy 2% larger than their weight, and 
having their rudders fixed in a neutral position. 
In all cases, in addition to the hydrodynamic 
moments, a restoring moment between 
buoyancy and weight appears for any pitch 
angle different from zero. These restoring 
moments are the main cause of the oscillations 
appearing in all cases a short time after the 
departure from the initial equilibrium position. 
Except for model 1 these oscillations diverge, 
but even in model 1 these oscillations appear 
around a position that is different from the 
original one. Figure 9 shows the results for 
model 1 with the same conditions as before but 
having a thrust of 5000 N. We can see that the 
solution becomes even more unstable.  

 
In order to quantify this intrinsic instability of 
the vehicle we have resorted to the definition of 
two non dimensional parameters: the angular 
position instability parameter (ζ ) and the 
angular acceleration instability parameter (η):  
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Where V0 is the initial test velocity and ∆θ is 
the maximum value of the pitch, yaw or roll 
angles achieved during time ∆t. After these 
definitions it is clear that the larger these 
parameters are the larger the instability is. 
 
 
 
 
 

Table1 Average values of the angular position instability parameter (ζ ) 
Thrust Model 1 Model 2 Model 3 
100 N 0.4136188 0.4798711 0.490919666 
5000 N  0.55383222 0.840444777 0.67224002 

 
Table2 Average values of the angular acceleration instability parameter (η) 
Thrust Model 1 Model 2 Model 3 
100 N 0.007827333 0.013238 0.01495422 
5000 N 0.039818222 0.01782477 0.019825566 
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The average values of these parameters were 
obtained after running the simulator for the 
three models tested for different rudder  
 
positions ranging from -10 to 10 degrees. 
Tables 1 and 2 presents these average values. 
 
It is clear that model 1 is the least unstable, and 
model 3 the most unstable, and that the 
instability increases with thrust. The body of 
the submarine and the fore rudder contribute to 
increasing the instability, while the aft rudder 
decreases it. A wider variety of tests results can 
be found in Fernández Ibarz [13].  
 
 
7. CONCLUSIONS 
 
A general model and simulator to study the 
dynamics of submarines has been developed 
from scratch and implemented within the 
Simulink environment. This simulator has been 
complemented with some simple analytical 
methods to obtain forces, moments and added 
mass coefficients needed for the calculations. 
This simulator has been validated with 
different published data from several airships 
and a submarine and then it has been applied to 
the stability analysis of a submersible 
catamaran with three possible rudder 
configurations. The results prove that the 
vehicle is intrinsically unstable. 
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